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The spec ia l  f ea tu res  of the method of succes s ive  approximat ions  as applied to the s i m u l a -  
t ion of nonlinear boundary conditions by e l ec t r i ca l  networks  a re  examined.  The depen-  
dence of the convergence  of the method on the initial  data is analyzed.  Resul ts  of an ex -  
pe r imen ta l  t es t  of the conclusions  a r e  presented .  

The problem of the s t eady - s t a t e  t e m p e r a t u r e  dis t r ibut ion in a solid with convective heat r emova l  at 
i t s  boundary and a number  of o ther  potential  theory  p rob l ems  reduce to finding a ha rmonic  function $ s a t i s -  
fying a boundary condition of the f o r m  

0~ 1 

Hencefor th  we shaI1 a s s um e  that  the function f is defined for  Od/0n > 0, is twice continuously d i f f e r -  
entiable,  is posi t ive (f > 0), and f(0) = 0. 

One effect ive method of solving L a p t a c e ' s  equation with the boundary condition (1) involves s imulat ion 
by networks  of e t ee t r i ca l  r e s i s t a n c e s  [1, 2]. Condition (1) is r ep re sen t ed  by additional ex te rna l  r e s i s t a n c e s  
R connected to the boundary junctions as shown in Fig.  1. 

In this s cheme  the potential  U i of the i - th  boundary junction is re la ted  to the cu r ren t  Ii to that junction 
by the re la t ion  

U~+AU~(I~)=C, i = 1 ,  2 . . . . .  m, (2) 
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Fig. I. 

l 

Electrical network for simulating 
boundary condition (I). 

Fig.  2. Graphical  in te rpre ta t ion  
of succes s ive  c u r r e n t  a p p r o x i m a -  
t ions .  
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Fig, 3. Schematic diagram of electrical network for region 

under consideration. 

For a network of uniform steps the relation between the thermal and electrical quantities is given by 

i(~ 
U AU~ (I0 C On C 

When the p a r a m e t e r s  of the body are  independent of the t e m p e r a t u r e  dis t r ibut ion the function f is 
l i nea r  

Bi On 

and (1) goes over  into a boundary condition of the third kind. This  is s imula ted  by connecting constant  ex -  
t e rna l  r e s i s t a n c e s  of identical  magnitudes R i to all the boundary junctions of the network 

R ~ = N ~ 1 7 6  =const,  i = 1 ,  2 . . . . .  m. 
Bi 

The p rob lem is much m o r e  compl ica ted  when the function f is not l inear .  In this ease  the magni tudes 
of the ex~cernal r e s i s t a n c e s  mus t  be chosen so that the following nonlinear  re Ia t ion  between the po ten t ia ld rop  
and the cu r r en t  density is sa t is f ied fo r  all boundary junct ions:  

A u = c i \  c ~ = ~ ( 5  (4) 

This  can be achieved e i ther  by connecting nonlinear two- t e rmina l  networks sa t i s fy ing Eq. (4) to the boundary 
]unctions of the network [3, 4], o r  by using the method of s u c c e s s i v e  approximat ions  [5, 6]. 

The method of nonlinear  t w o - t e r m i n a l  networks is ve ry  ef fect ive  but r equ i r e s  developing supp lemen-  
t a ry  fanctional units for the simulator. The method of successive approximations is simpler technically 
but in many cases is not a convergent process. We determine how the convergence of the method of suc- 
cessive approximations depends on the form of the function f. 

The method of successive approximations can be applied to electrical networks in two forms. The 
first of these is based on the successive refinement of the values of the currents to the junctions (current 
approximation), and the second on the refinement of the values of the potential drops across the external 
resistances (voltage approximation). We consider each of these modifications in turn. 
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T A B L E  1. R e s u l t s  of S i m u l a t i o n  by Method of S u c c e s s i v e  A p p r o x -  
i m a t i o n s  

Version No. 
Number of junctions 

Current approxi- I 
marion (I in mA 
and R in a) 

R 
I 
R 
I 
R 
I 
R 
I 
R 
I "  
R 
I 

Voltage approxima- 
tion (AU in V and R 

I 

300 600 300 300 600 
5,2i10,6 11,7 6,5t5,2 
540! 270 250 1901410 
5,3 11 12,8 ~4,517,0 
540 260 230 140 240( 
5,2 11 13 32 1,4 
540 260 230 l l O I -  
5,1 I0,712,5 381 
540 260 240 1001 --  
5,1 1,0,8 12,1] aJ t 
540260 2401100 t - -  

5,1 ,i1~ !z,1 / 

III  

in ~) 

II  

2 I 3 ] 4 

300 300 I3OC 
0,~ II,7116,, 
2150510 200, 

7,9 3,s 
30(3 90 I 60 
!,35 21 I 52 ~,81 

- -  - -  , - -  121 
~,8 ~, 

! 2 8 

300 300 1300 
5,2 10,6111,7 
03( 570 [ 490 

10( 7'8018'35 
5501 540 
7,8( 8,3~ 

_ [ _  

300 1 300 
3,1813,51 
640 [ 610 
4,4014,7(3 
550 t 540 
4,30t4,50 
550 1 540 

4,30i4,50 

I 

R 600 1300 300 1300 1000 500 [ 500 I 500 I 600 
~U 3,1213,1813,5114,95 4,0 4,1]4,351a.ol3,12 
R 360[170[130[ 20 720 3701390148011280 
AU 1,62 1,60 1,38 1,60 3,50 3,60t3,9515,3514,30 
R. 1140 57016901570 650 33013601460]1120 
~U 4.2 4,3 4,7 5,6 3,303,4513,85t5,3014,25 
R 120 50 I 30 [20 620 32013501460t1120 
~RU 0,70 0,65 0,50 1,50 3,30 3,40i3,8515,3514,25 

20001000 1000 620 620 320 350 460 I 
&U 3,30 3,40 3,85 5,35 

4 

300 
16,5 
430 
12,8 
480 
11,6 
,490 
fl,5 

30O 
4,95 
53O 
5,55 
490 
5,55 
490 
5,55 

The  m e t h o d  of s u c c e s s i v e  c u r r e n t  a p p r o x i m a t i o n s  c o n s i s t s  in  the  fo l lowing .  A s  a f i r s t  a p p r o x i m a t i o n  
i d e n t i c a l  e x t e r n a l  r e s i s t a n c e s  R~, c h o s e n  e i t h e r  a r b i t r a r i l y *  o r  f r o m p h y s i c a l  c o n s i d e r a t i o n s ,  a r e  c o n n e c t e d  
to  a l l  the  b o u n d a r y  junc t ions  of  the  n e t w o r k .  The  c u r r e n t s  I.  ~ a r e t h e n m c a s u r e d  f o r  e a c h  of the  j unc t ions  and 

1 
t h e s e  m e a s u r e d  v a l u e s  a r e  u sed  in  (4) to f ind the r e f i n e d  v a l u e s  of the  e x t e r n a l  r e s i s t a n c e s  

( l 

p (I~) (s) R ~ =  ~ 

In the  s econd  a p p r o x i m a t i o n  r e s i s t a n c e s  R? a r e  connec t ed  to  the b o u n d a r y  junc t ions  of the  ne tw ork  and the  
1 

s t e p s  d e s c r i b e d  above  a r e  r e p e a t e d .  Th i s  p r o c e s s  of s u c c e s s i v e  a p p r o x i m a t i o n s  i s  cont inued  (if i t  con -  
v e r g e s )  un t i l  the  v a l u e s  of [i in  two s u c c e s s i v e  a p p r o x i m a t i o n s  co inc ide  wi th in  the  r e q u i r e d  a c c u r a c y  f o r  a l l  

b o u n d a r y  j unc t i ons  s i m u l t a n e o u s l y .  

It i s  i m p o s s i b l e  to g ive  an  a n a l y s i s  of  the  c o n v e r g e n c e  of the  p r o c e s s  in the  g e n e r a l  c a s e  of  an a r b i -  
t r a r y  b o u n d a r y  of the  r e g i o n .  Le t  us  c o n s i d e r ,  t h e r e f o r e  the  s i m p l e s t  c a s e  of a s i ng l e  b o u n d a r y  j unc t ion  
(m = 1) f o r  which  we w r i t e  Eq .  (2) in  the  f o r m  

R / +  q~ (I) = C, (6) 

w h e r e  R i s  the  r e s i s t a n c e  b e t w e e n  the  b o u n d a r y  j unc t ion  and the  z e r o  po t en t i a l  j u n c t i o n s .  

We r e g a r d  the  b o u n d a r y  c o n d i t i o n  (6) a s  an  e q u a t i o n  f o r  the  c u r r e n t  

F (I) = O, (7) 

w h e r e  F(I) = RI + ~(I) - C. It i s  e a s y  to s e e  tha t  the  func t ion  F i s  def ined  on the i n t e r v a l  I E [0, C /~ , ] .  

In  u s ing  the m e t h o d  of  s u c c e s s i v e  c u r r e n t  a p p r o x i m a t i o n s  we e s s e n t i a l l y  a p p r o x i m a t e  F at  each  (k-th) 

s t e p  by a l i n e a r  func t ion  L k 

F (t) ~ Lh (I) = (/~ + R ~) I - -  C, (8) 

i . e . ,  t he  e x p e r i m e n t a l  d e t e r m i n a t i o n  of the  c u r r e n t  to a j unc t ion  in  e a c h  a p p r o x i m a t i o n  i s  e qu iva l e n t  to  s o l v -  
ing  the  l i n e a r  equa t ion  Lk(I ) = 0. tn  the  above  s c h e m e  f o r  f ind ing  the  e x t e r n a l  r e s i s t a n c e s  the  equa t ion  

R~ = F (I  ~-~) + C ~, (9) 
i a-1 

i s  s a t i s f i e d .  Th i s  l e a d s  to  the  fo l lowing  r e c u r r e n c e  r e l a t i o n  f o r  the  c u r r e n t s :  

*In p a r t i c u l a r  one m a y  c h o o s e  R,  l = 0 (i = 1, 2 . . . .  m ) .  
1 
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Fig.  4.  Graphs  of funct ions  
appea r ing  in bounda ry  cond i -  
t ion (29). 

C I k -- I k-1. (I0) 
F (I h'') + C 

In this interpretation the successive approximations scheme 

agrees withthe familiar method of chords (Fig. 2). The recurrence 

relation (10) also agrees with the corresponding recurrence relation 

for the method of chords if the points I = 0 and [ = I k-i are regarded 
as interpolation points. Consequently the convergence conditions for 

the method of chords can be used directly to estimate the convergence 

of the method of successive approximations for boundary condition (6) 

on an electrical network [7]. 

According to [71 the sequence I k will converge if the function Fff) 

satisfies the Fourier conditions: a) the first and second derivatives F' 

and F" do not change sign in the interval I E [0, C/R]; b) at an inter- 

polation point which is a common end of all chords (the point I = 0 in 

Fig. 2) the inequality 

F (0) F" (0) >0.  (11) 

is sa t i s f ied .  

The following estimate of the rate of convergence can be obtained*: 

H ii0- lhl .< %- 11 ~- I,-li, 

where h-< IF'(1)[ -<H for IE[0, C/R]. 

Equation (4) shows that the derivatives of the auxiliary function F and the original function f are con- 

nected by the relations 

, RoNo f,,. (12) F ' = f ~ + R o N o [ ,  F " =  2 2 
C 

SineeF0=-Citfollowsfrom (ii) and (12) that the sufficient conditions for the convergence in the meth- 
od of successive current approximations are that 

f '  > 0"), (13/ 
f "<  o. (14) 

hold in the i n t e rva l  d~ /dn  E [0, RoN0/]~]. 

If  condi t ions  (13) and (14) a r e  not sa t i s f ied  the sequence  I k m a y  converge ,  d iverge ,  o r  osc i l la te  about  
the value I ~ F o r  exampie ,  fo r  f '  -> 0 and f" > 0 the conve rgence  of the p r o c e s s ,  a c c o r d i n g  to [7], is e n s u re d  
only if the inequal i ty  

F'  (I ~ I ~ 
- -  < 2 .  (15)  

C 

is satisfied. It is easy to see that the following estimates are valid: 

By substituting (16) into (15) and using (4) we obtain a condition which is sufficient for a priori esti- 
mates of the convergence of the current approximation when f" > 0: 

f, (~oNo t ~ (17) ~,-Y-]  "< R#--;- 

However, as will be shown below, when f" > 0 the method of successive voltage approximations is 

more suitable than the current approximation. 

The method of successive voltage approximations is based on the use of the relation which is the in- 
verse of (4): 

*More accurate convergence estimates are given in [7]. 
tlt is easy to see that condition (13) is more rigid than the condition that F' does not change sign. 
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where f-is the inve r se  of f.* 

C f ()_~_) , (18) 
I = ~ (AU) = "RoNo 

The scheme of the method dif fers  f r o m  that considered e a r l i e r  in that at each step m e a s u r e m e n t s  a re  
made  of the potential  drops a c r o s s  the ex te rna l  r e s i s t a n c e s  (AUi) r a t he r  than the cur ren t s  to the junctions.  
In this case  the values  of the ex te rna l  r e s i s t a n c e s  a r e  refined by using {18): 

A U k - - 1  

�9 ~ : ~  , (19) 

By consider ing  a single junction of the network and using the s ame  p rocedure  as in the e s t ima te  of the 
convergence  of the success ive  cu r ren t  approx imat ions  method it  is e a sy  to show that  the presen t  p rob lem is 
reduced to finding the root AU ~ of the t ranscenden ta l  equation 

~) (hU) = O, (20) 

where  ~(AU) = R~(AU) + A U - C  i s  a function defined on the in te rva l  AU E [0, C]. Finding the root  of Eq. (20) 
by success ive  approx imat ions  is  re la ted  to approximat ing  the function d} at each (k-th) s tep by a l inear  func-  
t ion Mk: 

(I) (Au) ~ ~4k (Au) = N + 1 Au ~ c. 

The magni tudes  of the potential  drops  in two success ive  approx imat ions  a r e  connected by the r e c u r r e n c e  

re la t ion  

AU h C AUk.l, (21) 
q) (AU k'~) + C 

which is  analogous to Eq.  (10). 
succes s ive  approx imat ions  and the method of chords can be used. 

The de r iva t ives  of 4) are :  

Thus in the p resen t  case ,  as before ,  the analogy between the method of 

Y, (22) r  1+ R-W: 

(2~) d)"= ? ' .  
RoNoC 

If f is s t r i c t ly  monotonic the re la t ions  between the de r iva t ives  of the d i rec t  and inverse  functions a re  given 
by the wel l -known exp re s s ions  

- -  ) 7'-- fl (24) 
p =  f" (25) 

(f'p 

Since r (0) = - C ,  by s t a r t ing  with the F o u r i e r  conditions and using (22)-(25) we obtain the following 
sufficient  conditions for  the convergence  in the succes s ive  voltage approximat ions  method: 

[' > 0, (26) 

f" > O. (27) 

I f  f) > 0 b u r r "  < 0, i t  can be shown by using an inequality of the type (15) and the m a x i m u m  e s t i m a t e s  
fo r  AU ~ and ~'(AU ~ that  the convergence  of the voltage approx imat ion  method is ensured  only when the fo l -  
lowing sufficient condition is  sa t is f ied 

F(~) < Rogo. (28) 
R 

As noted above , these  resu l t s  apply only to the s imp le s t  case  of a single network junction. T h e r e  is r e a s o n  
to suppose ,  however ,  that quali tat ively these  resu l t s  r ema in  valid a l so  in the genera l  ease  of an a r b i t r a r y  
boundary approx imated  by m network junct ions.  

*As is well  known, the function f -exis t s  if f is  s t r ic t ly  monotonic.  Hencefor th  we a s s u m e  that  this is the 
cas e. 
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To test  this assumption we investigated the two-dimensional  problem of finding a harmonic  function 
d on a half-plane for  the boundary conditions (Fig. 3) 

I) t % . f  (O~) = 1, 0.~.. ,x,<I, y = 0 ; < ' ~  (29) 

II) ~ =0, l < i x l < o o ,  y = 0 .  (30) 

This problem was solved by simulating the field on a type I~I-12 e l ec t ro - in t eg ra to r  having a network 
with an "expander" [8] designed to approximate an infinite region. Since the sys tem under considerat ion is 
symmet r i c  about the y axis, half the region (Fig. 3) was set up on tke network. 

The function f was specified graphical ly.  Three vers ions  were investigated (Fig. 4). 

I) f" < 0, gently sloping curve; 

II) f" > 0; 

III) f" < 0, steep curve.  

Simulation was performed for the following model pa ramete rs :  C = 7.0 V, R 0 = 100f~, N o = 3.5 steps.  

Boundary condition (29) was simulated for each of the indicated vers ions  by the methods of success ive  
cur rent  approximations and voltage approximations.  The resul ts  are shown in Table 1. 

Table 1 shows that for curve I the p rocess  of success ive  cur rent  approximations converges but the 
voltage approximation diverges;  for  curve II the voltage approximation converges but the current  approxi-  
mation diverges;  for curve ItI both approximations converge.  The last result  a r i ses  f rom the fact that 
curve III is much s teeper  than curve I (el. (28)). 

It is easy  to see that the data obtained correspond to the previously formulated conditions for the con- 
vergence in the method of success ive  approximations.  

d 
Bi 
f, 9, F, ~, LandM 
I" 
n 

U 
2~U 
C 
I 

Ro 
R 

No 

m 

N O T A T I O N  

is the function sought (the temperature) ;  
is the Biot number; 
are  the symbols  for functions; 
is the boundary surface;  
ts the outward normal  to the boundary surface;  
is the e lec t r ic  potential; 
is the potential drop ac ross  an external  res is tance;  
ts a constant value of the potential; 
ts the cur ren t  to a boundary junction of the e leet r ieal  network; 
ts the res is tance  between adjacent junctions of the e lec t r ica l  network; 
is the external res is tance  at a boundary junction; 
is the res is tance  between a boundary junction and "infinity"; 
is the number of steps of the network corresponding to the scale of length of the 
original system; 
is the number of boundary junctions of the network. 
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