SIMULATION OF NONLINEAR BOUNDARY CONDITIONS
BY ELECTRICAL NETWORKS

R. A. Pavlovskii UDC 681.142.334

The special features of the method of successive approximations as applied to the simula-
tion of nonlinear boundary conditions by electrical networks are examined. The depen-
dence of the convergence of the method on the initial data is analyzed. Results of an ex~
perimental test of the conclusions are presented.

The problem of the steady-state temperature distribution in a solid with convective heat removal at
its boundary and a number of other potential theory problems reduce to finding a harmonic function ¢ satis-
fying a boundary condition of the form
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01 (5)
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Henceforth we shall agsume that the function f is defined for 8¢/9n > 0, is twice continuously differ-
entiable, is positive (f >0), and £(0) =

=1. | n

r

One effective method of solving Laplace's equation with the boundary condition (1) involves simulation
by networks of electrical resistances {1, 2]. Condition (1} is represented by additional external resistances
R connected to the boundary junctions as shown in Fig. 1.

In this scheme the potential U; of the i-th boundary junction is related to the current I; fo that junction
by the relation

U, AU, (1)) =C, i=1,2 ..., m @
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Fig. 2. Graphical interpretation
Fig. 1. Electrical network for simulating of successive current approxima-
boundary condition (1). tions.
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F;g 3. Schematic diagram of electrical network for region
under consideration.

For a network of uniform steps the relation between the thermal and electrical quantities is given by
o8
o M5 1 e _mm, "
U ANy € on c
When the parameters of the body are independent of the temperature distribution the function f is

linear

a8y 1 d%
f (5‘) ~ B on

and (1) goes over into a boundary condition of the third kind. This is simulated by connecting constant ex-
ternal resistances of identical magnitudes Ry to all the boundary junctions of the network

Ri T me—
i
The problem is much more complicated when the function f is not linear. In this case the magnitudes
of the external resistances must be chosen so that the following nonlinear relation between the potential drop
and the current density is satisfied for all boundary junctions:

Ry |
C

("

AUzW( ):@w. (4)

This can be achieved either by connecting nonlinear two-terminal networks satisfying Eq. @) to the boundary
junctions of the network [3, 4], or by using the method of successive approximations [5, 8].

The method of nonlinear two-terminal networks is very effective but requires developing supplemen-
tary functional units for the simulator. The method of successive approximations is simpler technically
but in many cases is not a convergent process. We determine how the convergence of the method of suc-
cessive approximations depends on the form of the function f,

The method of successive approximations can be applied to electrical networks in two forms. The
first of these is based on the successive refinement of the values of the currents to the junctions {current
approximation), and the second on the refinement of the values of the potential drops across the external
resistances (voltage approximation). We consider each of these modifications in turn,
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TABLE 1. Results of Simulation by Method of Successive Approx-

imations
Version No, I i d it
Number of junctions tfalalalifelsfali]a]s]s
Current approxi= 1 R 1600300300300 600300300300 600300300300
mation (I in mA i 5,2110,6{11,7/16,5! 5,2110,6{11,716,5/ 5,2 {10,6{11,7|16,5
and R in Q) 21 R |5401270(250 190410210 510 |2000{1030) 570 | 490 | 430
I 5,3 11 {12,8(24,5|7,0{ 156 |{7,9]3,04,10/8,10/8,90/12,8
3| R [540|260|230| 140 |2400/1300] 90 | 60 |1100| 550 | 540 | 480
1 5,2 11 | 13| 32 {1,4(2,35] 21 | 52 {3,85(7,80]8,35/11,6
4| R |5401260{230|110| — | — | — | — |1120] 550 | 540 | 490
H 5,1110,7/12,5] 38 3,857,8018,35/11,5
51 R 540126012401100) — | — | — | — ] —{ — | — | —
I+ 15,110,8/12,1] 41 -
67 R [540126012401100) —~ | — | — | — | — | — | — | —
i 5,1110,812,1) 41
Voltage approxima- 1 R 1600|300 | 300 | 300 |1000{ 500 | 500 | 500 | 600 | 300 | 300 | 300
fon (AU in Vand R | | AU [3.123,18(3,51\4,95/4,0|4,1 |4,35 5,5 3,123,18(3,51/4,95
. 21 R |360[170|130| 20 | 720|370 | 390 | 480 [1280| 640 | 610 | 530
in Q) . AU [1,62]1,60{1,38/1,603,50|3,60!3,95(5,354,30|4,4014,70|5,55

31 R. |1140/ 570690 | 570 | 650 | 330 | 360 | 460 {1120} 550 | 540 | 490
AU 14,214,314,715,6]3,30(3,45/3,855,30/4,25/4,3014,50/5,55
4| R [120] 50 | 30 | 20 | 620|320 350 | 460 11120| 550 | 540 | 490
AU 10,700,65/0,50(1,50,3,30/3,40/3,855,35:4,25/4,3014,50/5,55
51 R |2000/1000/1000] 620 | 6203201350 1460 — | — | — | —
ab 3,30:3,40/3,85/5,35

The method of successive current approximations consists in the following. As a first approximation
identical external resistances R‘%, chosen either arbitrarily* or fromphysical considerations, are connected
to all the boundary junctions of the network. The currents I! arethen measured for each of the junctions and
these measured values are used in {4) to find the refined values of the external resistances

1
RE— R4 (II‘) . (5)
I;
In the second approximation resistances R% are connected to the boundary junctions of the network and the
steps described above are repeated. This process of successive approximations is continued (if it con-
verges) until the values of I in two successive approximations coinecide within the required accuracy for all

boundary junctions simulfaneously.

It is impossible to give an analysis of the convergence of the process in the general case of an arbi-
trary boundary of the region. Let us consider, therefore the simplest case of a single boundary junction
(m = 1) for which we write Eq. (2) in the form

RI+q()=C, ©
where R is the resistance between the boundary junction and the zero potential junctions.

We regard the boundary condition (6) as an equation for the current

Fiy=0, @)
where F(I) = RI + @) — C. It is easy to see that the function F is defined on the interval I € [0, C/ﬁ].

In using the method of successive current approximations we essentially approximate F ateach (k-th)
step by a linear function Ly '

F)yaly) = R+ Ry I—C, ®

i.e., the experimental determination of the current fo a junction in each approximation is equivalent to solv-
ing the linear equation Ly (I) = 0. In the above scheme for {inding the external resistances the equation

BTy ~
F(I [k): £ _g o)

R: =

is satisfied. This leads to the following recurrence relation for the currents:

*In particular one may choose Rill =0 (i=1,2,...m).
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! F= kL (10)
‘ F(*y+C
08 { 5 In this interpretation the successive approximations scheme
/1 agrees withthe familiar method of chords (Fig. 2). The recurrence
/ relation (10) also agrees with the corresponding recurrence relation
w0 , / ' ] for the method of chords if the points I =0 and I = 1K1 are regarded
1”7 [l{ /I’/ ag interpolation points. Consequently the convergence conditions for
o4 “ the method of chords can be used directly to estimate the convergence
///[ of the method of successive approximations for boundary condition (6)
) on an electrical network [7].
/ According to [7] the sequence 1K will converge if the function F(I)
0 ¥ m ”Jg i satisfies the Fourier conditions: a) the first and second derivatives F!
' ' and F" do not change sign in the interval I € [0, C/RI]; b) at an inter-
Fig. 4. Graphs of functions polation point which is a common end of all chords (the point I = 0 in
appearing in boundary condi- Fig. 2} the inequality
tion (29).

F(0) F7(0) >0. {11)
is satisfied.

The following estimate of the rate of convergence can be obtained*:
10— 1M A VL L
h
where h = |[F'(D| =H for I €[0, C/R].

Equation (4) shows that the derivatives of the auxiliary function F and the original function £ are con-
nected by the relations

- 2572
F=R+RWJ,F“:Rf°ﬂ (12)

Since Fy=— Citfollowsfrom (11) and (12) that the sufficient conditions for the convergence in the meth-
od of successive current approximations are that
F> 09, (13)
f'<<o. (14)
hold in the interval dd /dn € [0, RONO/ﬁ].

If conditions (13) and (14) are not satisfied the sequence I may converge, diverge, or oscillate about
the value I, For example, for f' = 0 and " > 0 the convergence of the process, according to [7], is ensured
only if the inequality

7 0 0
F ! =2

(15)
C
is satisfied. It is easy to see that the following estimates are valid:
C C 5 c
PLE, FUYLF ()= R+¢ —,—>. (16)
5 F) (R) v (R

By substituting (16) into (15) and using (4) we obtain a condition which is sufficient for a priori esti-
mates of the convergence of the current approximation when f" > 0.
f(&ﬂ&) R

— . 17
R JSEN, a7)

However, as will be shown below, when f" >0 the method of successive voltage approximations is
more suitable than the current approximation.

The method of successive voltage approximations is based on the use of the relation which is the in-
verse of (4):

*More accurate convergence estimates are givenin [7].
It is easy to see that condition (13) is more rigid than the condition that ¥' does not change sign.
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I=ge = 22T (%) (19
) e

where f is the inverse of £.*

The scheme of the method differs from that considered earlier in that at each step measurements are
made of the potential drops across the external resistances (AU;) rather than the currents to the junctions.
In this case the values of the external resistances are refined by using (18):

e

§ R e 19
o (AUF™Y 19)

By considering a single junction of the network and using the same procedure as in the estimate of the
convergence of the succegsive current approximations method it is easy to show that the present problem is
reduced to finding the root AU of the transcendental equation

O AU) =0, (20)

where $(AT) = 'ﬁzo(AU} + AU-C is a function defined on the interval AU € [0, C]. Finding the root of Eq. (20)
by successive approximations is related to approximating the function ¢ at each (k-th) step by a linear fune-
tion Mj:

D (AU) o M, (AU) = (ﬁRE +1) AU —C.
The magnitudes of the potential drops in two successive approximations are connected by the recurrence
relation
AU* ¢ AU#1 2y

e SO —— R

T o@UTy L C

which is analogous to Eg. (10). Thus in the present cage, as before, the analogy between the method of
successive approximations and the method of chords can be used.

The derivatives of & are:

o é ’ )
@ = 14 RN, ' {22)
7’ § ’ A (23)
‘ @'~ RN C r

If f is strictly monotonic the relations between the derivatives of the direct and inverse functions are given
by the well-known expressions

o 1
J'= o
o
iy

(24)

F= (25)

Since ®(0) = —C, by starting with the Fourier conditions and using (22)-(25) we obtain the following
sufficient conditions for the convergence in the successive voltage approximations method:

i'=0, (26)
f/t > 0' . (27)
If f1= 0 but f" < 0,it ecan be shown by using an inequality of the type (15) and the maximum estimates

for AU® and $(AT") that the convergence of the voltage approximation method is ensured only when the fol-
lowing sufficient condition is satisfied

iy Rl (28)
R
As noted above,these results apply only to the simplest case of a single network junction. Thereis reason

to suppose, however, that qualitatively these results remain valid also in the general case of an arbitrary
boundary approximated by m network junctions.

*As is well known, the function f exists if f is strictly monotonic. Henceforth we assume that this is the
case.
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To test this assuraption we investigated the two-dimensional problem of finding a harmonic function
$ on a half-plane for the boundary conditions (Fig. 3)

!

I)ﬁ+f<3%):l, 0K <1, y=0; {29)

) & =0, l<lf<<oo, y=0. (30)

This problem was solved by simulating the field on a type EI-12 electro-integrator having a network
with an "expander" [8] designed to approximate an infinite region. Since the system under consideration is
symmetric about the y axis, half the region (Fig. 3) was set up on the network.

The function { was specified graphically. Three versions were investigated (Fig. 4).

I) f" <0, gently sloping curve;

Iy f* > 0;

I fr < 0, steep curve.

Simulation was performed for the following model parameters: C =7.0 V, R; = 1000, N, = 3.5 steps.

Boundary condition (29) was simulated for each of the indicated versions by the methods of successive
current approximations and voltage approximations. The results are shown in Table 1.

Table 1 shows that for curve I the process of successive current approximations converges but the
voltage approximation diverges; for curve II the voltage approximation converges but the current approxi-
mation diverges; for curve I both approximations converge. The last result arises from the fact that
curve III is much steeper than curve I (cf. (28)).

It is easy to see that the data obtained correspond to the previously formulated conditions for the con-
vergence in the method of successive approximations.

8
Bi
f, ¢, F, ¢ Land M

NOTATION

is the function sought (the temperature);

is the Biot number;

are the symbols for functions;

is the boundary surface;

is the outward normal to the boundary surface;

is the electric potential;

is the potential drop across an external resistance;

is a constant value of the potential; .

is the current to a boundary junction of the electrical network;

is the resistance between adjacent junctions of the electrical network;
is the external resistance at a boundary junction;

is the resistance between a boundary junction and "infinity™

is the number of steps of the network corresponding to the scale of length of the
original system;

is the number of boundary junctions of the network.
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